Geometria e Poligonos Regulares
549 palavras
3 páginas
A Geometria (em grego antigo: γεωμετρία; geo- "terra", -metria "medida") é um ramo da matemática preocupado com questões de forma, tamanho e posição relativa de figuras e com as propriedades do espaço. Um matemático que trabalha no campo da geometria é denominado de geômetra. A geometria surgiu independentemente em várias culturas antigas como um conjunto de conhecimentos práticos sobre comprimento, área e volume, sendo que o aparecimento de elementos de uma ciência matemática formal é no mínimo tão antigo quanto Tales (século VI a.C.). Por volta do século III a.C., a geometria foi posta em uma forma axiomática por Euclides, cujo tratamento, chamado de geometria euclidiana, estabeleceu um padrão que perdurou por séculos.1 Arquimedes desenvolveu técnicas engenhosas para calcular áreas e volumes, antecipando em várias maneiras o moderno cálculo integral. O campo da astronomia, especialmente o mapeamento das estrelas e planetas na esfera celestial e a descrição das relações entre os movimentos dos corpos celestiais, foi uma das mais importantes fontes de problemas geométricos durante os mil e quinhentos anos seguintes. Tanto a geometria quanto a astronomia foram consideradas no mundo clássico parte do Quadrivium, um subgrupo das sete artes liberais cujo domínio era considerado essencial para o cidadão livre.
Como mostrado por Arquimedes, uma esfera tem 2/3 do volume de seu cilindro circunscrito.
A geometria esférica é um exemplo de geometria não-euclidiana. Ela tem aplicações práticas em navegação e astronomia.
A partir da experiência, ou, eventualmente, intuitivamente, as pessoas caracterizam o espaço por certas qualidades fundamentais, que são denominadas axiomas de geometria (como, por exemplo, os axiomas de Hilbert). Esses axiomas não são provados, mas podem ser usados em conjunto com os conceitos matemáticos de ponto, linha reta, linha curva, superfície e sólido para chegar a conclusões lógicas, chamadas de teoremas.
A influência da geometria sobre as