Geometria Espacial

746 palavras 3 páginas
Geometria Espacial
Pirâmides
Dados um polígono convexo R, contido em um plano , e um ponto V ( vértice) fora de , chamamos de pirâmide o conjunto de todos os segmentos .

Elementos da pirâmide Dada a pirâmide a seguir, temos os seguintes elementos:

base: o polígono convexo R arestas da base: os lados do polígono arestas laterais: os segmentos faces laterais: os triângulos VAB, VBC, VCD, VDE, VEA altura: distância h do ponto V ao plano Classificação Uma pirâmide é reta quando a projeção ortogonal do vértice coincide com o centro do polígono da base. Toda pirâmide reta, cujo polígono da base é regular, recebe o nome de pirâmide regular. Ela pode ser triangular, quadrangular, pentagonal etc., conforme sua base seja, respectivamente, um triângulo, um quadrilátero, um pentágono etc. Veja:

Observações:
1ª) Toda pirâmide triangular recebe o nome do tetraedro. Quando o tetraedro possui como faces triângulos eqüiláteros, ele é denominado regular ( todas as faces e todas as arestas são congruentes).

2ª) A reunião, base com base, de duas pirâmides regulares de bases quadradas resulta num octaedro. Quando as faces das pirâmides são triângulos eqüiláteros, o octaedro é regular.

Geometria Espacial
Relação de Euler Em todo poliedro convexo é válida a relação seguinte:
V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces.
Observe os exemplos:

V=8 A=12 F=6
8 - 12 + 6 = 2

V = 12 A = 18 F = 8
12 - 18 + 8 = 2

Poliedros platônicos Diz-se que um poliedro é platônico se, e somente se:
a) for convexo;
b) em todo vértice concorrer o mesmo número de arestas;
c) toda face tiver o mesmo número de arestas;
d) for válida a relação de Euler. Assim, nas figuras acima, o primeiro poliedro é platônico e o segundo, não-platônico. Prismas Na figura abaixo, temos dois planos paralelos e distintos, , um polígono convexo R contido em e uma reta r que intercepta , mas não

Relacionados

  • geometria espacial
    615 palavras | 3 páginas
  • Geometria espacial
    866 palavras | 4 páginas
  • Geometria Espacial
    2516 palavras | 11 páginas
  • geometria espacial
    1990 palavras | 8 páginas
  • Geometria Espacial
    2859 palavras | 12 páginas
  • Geometria Espacial.
    347 palavras | 2 páginas
  • Geometria espacial
    438 palavras | 2 páginas
  • Geometria Espacial
    518 palavras | 3 páginas
  • GEOMETRIA ESPACIAL
    920 palavras | 4 páginas
  • Geometria Espacial
    964 palavras | 4 páginas