Geometria Espacial
Ângulo poliédrico Sejam n semi-retas de mesma origem tais que nunca fiquem três num mesmo semiplano. Essas semi-retas determinam n ângulos em que o plano de cada um deixa as outras semi-retas em um mesmo semi-espaço. A figura formada por esses ângulos é o ângulo poliédrico.
Poliedros Chamamos de poliedro o sólido limitado por quatro ou mais polígonos planos, pertencentes a planos diferentes e que têm dois a dois somente uma aresta em comum. Veja alguns exemplos:
Os polígonos são as faces do poliedro; os lados e os vértices dos polígonos são as arestas e os vértices do poliedro. Poliedros convexos e côncavos Observando os poliedros acima, podemos notar que, considerando qualquer uma de suas faces, os poliedros encontram-se inteiramente no mesmo semi-espaço que essa face determina. Assim, esses poliedros são denominados convexos. Isso não acontece no último poliedro, pois, em relação a duas de suas faces, ele não está contido apenas em um semi-espaço. Portanto, ele é denominado côncavo. Classificação Os poliedros convexos possuem nomes especiais de acordo com o número de faces, como por exemplo: tetraedro: quatro faces pentaedro: cinco faces hexaedro: seis faces heptaedro: sete faces octaedro: oito faces icosaedro: vinte faces
Geometria Espacial
Poliedros regulares Um poliedro convexo é chamado de regular se suas faces são polígonos regulares, cada um com o mesmo número de lados e, para todo vértice, converge um mesmo número de arestas. Existem cinco poliedros regulares:
Poliedro
Planificação
Elementos
Tetraedro
4 faces triangulares
4 vértices
6 arestas
Hexaedro
6 faces quadrangulares
8 vértices
12 arestas
Octaedro
8 faces triangulares
6 vértices
12 arestas
Dodecaedro
12 faces pentagonais
20 vértices
30 arestas
Icosaedro
20 faces triangulares
12 vértices
30 arestas
Geometria Espacial
Relação de Euler