geometria espacial aula 2
Paralelepípedo retângulo Seja o paralelepípedo retângulo de dimensões a, b e c da figura:
Temos quatro arestas de medida a, quatro arestas de medida b e quatro arestas de medida c; as arestas indicadas pela mesma letra são paralelas. Diagonais da base e do paralelepípedo Considere a figura a seguir:
db = diagonal da base dp = diagonal do paralelepípedo Na base ABFE, temos:
No triângulo AFD, temos:
Área lateral Sendo AL a área lateral de um paralelepípedo retângulo, temos:
AL= ac + bc + ac + bc = 2ac + 2bc =AL = 2(ac + bc) Área total Planificando o paralelepípedo, verificamos que a área total é a soma das áreas de cada par de faces opostas:
AT= 2( ab + ac + bc) Volume Por definição, unidade de volume é um cubo de aresta 1. Assim, considerando um paralelepípedo de dimensões 4, 2 e 2, podemos decompô-lo em 4 . 2 . 2 cubos de aresta 1:
Então, o volume de um paralelepípedo retângulo de dimensões a, b e c é dado por:
V = abc Como o produto de duas dimensões resulta sempre na área de uma face e como qualquer face pode ser considerada como base, podemos dizer que o volume do paralelepípedo retângulo é o produto da área da base AB pela medida da altura h:
Cubo Um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c) recebe o nome de cubo. Dessa forma, as seis faces são quadrados.
Diagonais da base e do cubo Considere a figura a seguir:
dc=diagonal do cubo db = diagonal da base Na base ABCD, temos:
No triângulo ACE, temos:
Área lateral A área lateral AL é dada pela área dos quadrados de lado a:
AL=4a2
Área total A área total AT é dada pela área dos seis quadrados de lado a:
AT=6a2
Volume De forma semelhante ao paralelepípedo retângulo, o volume de um cubo de aresta a é dado por:
V= a . a . a = a3
Generalização do volume de um prisma Para