Física teórica e experimental
Equação geral do Oscilador Harmônico Simples.
x(t) = A . cos (wt + Φ)
Quando temos:
Amplitude (A) = 28 m
Frequência angular (w) = 19π/2 . rad⁄s
Ângulo de fase (Φ) = 10π/13 .rad
Aplicando os valores na equação geral:
x(t) = 28 . cos (19π/2 .t+ 10π/13)
Dados para x(t):
A amplitude é máxima em x(t) quando o cos (19π/2 .t+ 10π/13) = 1
(19π/2 .t+ 10π/13) = Ө
cos Ө = 1 quando Ө = 0, 2π, 4π, (...).
Logo os valores de t para:
Ө = 0
19π/2 .t+ 10π/13 = 0
19π/2 .t = -10π/13 t= -10π/13 . 2/19π t= (-20π)/247π t= (-20)/247 s
Ө = 2π
19π/2 .t+ 10π/13 = 2π
19π/2 .t = 2π-10π/13 t= 16π/13 . 2/19π t= 32π/247π t= 32/247 s
Ө = 4π
19π/2 .t+ 10π/13 = 4π
19π/2 .t = 4π-10π/13 t= 42π/13 . 2/19π t= 84π/247π t= 84/247 s
A amplitude é mínima em x(t) quando cos (19π/2 .t+ 10π/13) = -1
(19π/2 .t+ 10π/13) = Ө
cos Ө = -1 quando Ө = π, 3π, 5π, (...).
Logo os valores de t para:
Ө = π
19π/2 .t+ 10π/13 = π
19π/2 .t = π-10π/13 t= 3π/13 . 2/19π t= 6π/247π t= 6/247 s
Ө = 3π
19π/2 .t+ 10π/13 = 3π
19π/2 .t = 3π-10π/13 t= 29π/13 . 2/19π t= 58π/247π t= 58/247 s
Ө = 5π
19π/2 .t+ 10π/13 = 5π
19π/2 .t = 5π-10π/13 t= 55π/13 . 2/19π t= 110π/247π t= 110/247
A amplitude é zero em x(t) quando cos (19π/2 .t+ 10π/13) = 0
(19π/2 .t+ 10π/13) = Ө
cos Ө = 0 quando Ө = π/2, 3π/2, 5π/2, 7π/2, 9π/2,(...).
Logo os valores de t para:
Ө = π/2
19π/2 .t+ 10π/13 = π/2
19π/2 .t = π/2-10π/13 t= (-7π)/26 . 2/19π t= (-14π)/494π t= 〖-14〗^(÷2)/〖494〗^(÷2) s t= (-7)/247 s
Ө = 3π/2
19π/2 .t+ 10π/13 = 3π/2
19π/2 .t = 3π/2-10π/13 t= 19π/26 . 2/19π t= 38π/494π t= 〖38〗^(÷2)/〖494〗^(÷2) t= 1/13 s
Ө = 5π/2
19π/2 .t+ 10π/13 = 5π/2
19π/2 .t = 5π/2-10π/13 t= 45π/26 . 2/19π t= 90π/494π t= 〖90〗^(÷2)/〖494〗^(÷2) t= 45/247 s
Ө = 7π/2
19π/2 .t+ 10π/13 = 7π/2
19π/2 .t = 7π/2-10π/13 t= 71π/26 . 2/19π
t=