Fução
A função para ser do 2º grau, também denominada função quadrática, precisa assumir algumas características, pois ela deve ser dos reais para os reais, definida pela expressão y = ax2 + bx + c ou f(x) = ax2 + bx + c, sendo que a, b e c são números reais, sendo a ≠ 0, é considerada uma função do 2º grau, onde o valor y está em função do valor de x, isto é, x é considerado o domínio da função, enquanto y ou f(x) é a imagem. Concluímos que a condição para que uma função seja do 2º grau é que o valor de a, da forma geral, não pode ser igual a zero.
Então, podemos dizer que a definição de função do 2º grau é: f: R→ R definida por f(x) = ax2 + bx + c, com a Є R* e b e c Є R.
Numa função do segundo grau, os valores de b e c podem ser iguais à zero, quando isso ocorrer, a equação do segundo grau será considerada incompleta.
Veja alguns exemplos de Função do 2º grau:
f(x) = 5x2 – 2x + 8; a = 5, b = – 2 e c = 8 (Completa)
f(x) = x2 – 2x; a = 1, b = – 2 e c = 0 (Incompleta)
f(x) = – x2; a = –1, b = 0 e c = 0 (Incompleta)
A representação geométrica de uma função do 2º grau é dada por uma parábola, que de acordo com o sinal do coeficiente a pode ter concavidade voltada para cima ou para baixo.
As raízes de uma função do 2º grau são os pontos onde a parábola intercepta o eixo x. Para obtermos a condição dessa parábola em relação ao eixo x, precisamos aplicar o método de Bháskara, trocando f(x) ou y por zero. Devemos sempre lembrar que uma equação do 2º grau é dada pela expressão ax² + bx + c = 0, onde os coeficientes a, b e c são números reais e a deve ser diferente de zero. Uma função do 2º grau respeita a expressão f(x) = ax² + bx + c ou y = ax² + bx + c, onde x e y são pares ordenados pertencentes ao plano cartesiano e responsáveis pela construção da parábola.
O plano cartesiano responsável pela construção das funções é dado pela intersecção de dois eixos perpendiculares, enumerados de acordo com a reta numérica dos