Função de 1grau
Definição
Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a0. Na função f(x) = ax + b, o número a é chamado de coeficiente de x e o número b é chamado termo constante.
Exemplos de funções polinomiais do 1º grau:
f(x) = 5x - 3, onde a = 5 e b = - 3 f(x) = -2x - 7, onde a = -2 e b = - 7 f(x) = 11x, onde a = 11 e b = 0
Gráfico
O gráfico de uma função polinomial do 1º grau, y = ax + b, com a0, é uma reta oblíqua aos eixos Ox e Oy. Exemplo:
Vamos construir o gráfico da função y = 3x - 1:
Como o gráfico é uma reta, basta obter dois de seus pontos e ligá-los com o auxílio de uma régua:
a) Para x = 0, temos y = 3 · 0 - 1 = -1; portanto, um ponto é (0, -1). b) Para y = 0, temos 0 = 3x - 1; portanto, e outro ponto é . Marcamos os pontos (0, -1) e no plano cartesiano e ligamos os dois com uma reta
Zero e Equação do 1º Grau
Chama-se zero ou raiz da função polinomial do 1º grau f(x) = ax + b, a0, o número real x tal que f(x) = 0.
Temos:
f(x) = 0 ax + b = 0
Exemplos:
Obtenção do zero da função f(x) = 2x - 5: f(x) = 0 2x - 5 = 0
Cálculo da raiz da função g(x) = 3x + 6:
g(x) = 0 3x + 6 = 0 x = -2 Cálculo da abscissa do ponto em que o gráfico de h(x) = -2x + 10 corta o eixo das abicissas:
O ponto em que o gráfico corta o eixo dos x é aquele em que h(x) = 0; então: h(x) = 0 -2x + 10 = 0 x = 5 Crescimento e decrescimento
Consideremos a função do 1º grau y = 3x - 1. Vamos atribuir valores cada vez maiores a x e observar o que ocorre com y:
x
-3
-2
-1
0
1
2
3
y
-10
-7
-4
-1
2
5
8
Notemos que, quando aumentos o valor de x, os correspondentes valores de y também aumentam. Dizemos, então que a função y = 3x - 1 é