Formulas para engenharia
USEFUL FORMULAS rect(t) Height = 1 Area = 1 Width = 2 −1 1 t 1 tri(t)
Definitions: sinc(x) =
sin(πx) πx
Height = 1 Area = 1 Width = 1
1
t −0.5 0.5
Signal Energy
E=
x2 (t) dt for three pulse shapes x(t) shown below
Half-Cycle Sinusoid E = A 2b / 2 b
∞
A b
Rectangular Pulse E = A2 b
∞
A
A b
Triangular Pulse E = A2 b / 3
∞
Sifting Integral: δ(t) x(t) = x(t)
x(t)δ(t−α) dt = x(α)
−∞
Convolution: y(t) = rect(t) rect(t) = tri(t)
∞
x(τ )h(t−τ ) dτ =
−∞
x(t−τ )h(τ ) dτ
−∞
u(t) u(t) = r(t)
e−αt u(t) e−αt u(t) = te−αt u(t)
∞
FOURIER TRANSFORM: x(t) ⇐ ft ⇒ X(f ) δ (t) (1) t -0.5 0.5 1 t rect(t) 1
X(f ) =
−∞
x(t)e−j2πf t dt
x(t) =
−∞
X(f )ej2πf t df
sinc (f)
e −α t t
1 α + j 2π f
sinc2 (t) ⇐ ft ⇒ tri(f )
tri(t) ⇐ ft ⇒ sinc2 (f ) 1 X(f /α) |α|
te−αt ⇐ ft ⇒
1 (α + j2πf )2
FT Properties Scale: x(αt) ⇐ ft ⇒
Shift: x(t − α) ⇐ ft ⇒ X(f )e−j2πf α X(f + f0 ) + X(f − f0 ) 2
Derivative: x (t) ⇐ ft ⇒ j2πf X(f )
Modulation: x(t) cos(2πf0 t) ⇐ ft ⇒
Convolution: x(t) h(t) ⇐ ft ⇒ X(f )H(f )
∞
Multiplication: x1 (t)x2 (t) ⇐ ft ⇒ X1 (f ) X2 (f )
∞
Central Ordinates: x(t)
t=0 ∞
= x(0) =
−∞ ∞ −∞
X(f ) df
X(f )
f =0
= X(0) =
−∞
x(t) dt
Signal Energy =
−∞
x2 (t) dt =
|X(f )|2 df
(|X(f )| is magnitude spectrum)
∞
∞
FOURIER SERIES: xp (t) = k=−∞ Dk ej2πkf0 t = D0 + k=1 2|Dk | cos(2πkf0 t+θk )
(where Dk = |Dk |ejθk )
FS Coefficients: X[k] = Dk =
1 X1 (f ) f =kf0 (where X1 (f ) is the Fourier transform of one period) T The k-th harmonic of xp (t) is 2|Dk | cos(2πkf0 t + θk ) or 2|X[k]| cos(2πkf0 t + θk ). 1 T
T 0 ∞ ∞
Signal Power =
x2 (t) dt = p k=−∞ |Dk |2 = k=−∞ |X[k]|2
(|..|2 means magnitude squared)
c Ashok Ambardar, Fall 2010
1
LAPLACE TRANSFORMS and PROPERTIES δ(t) ⇐ lt ⇒ 1 te−αt u(t) ⇐ lt ⇒ u(t) ⇐ lt ⇒ 1 (s + α)2 1 s tu(t) ⇐ lt ⇒ 1 s2 e−αt u(t) ⇐ lt ⇒ 1 s+α ω