facul
Conceitos:
O estudo da probabilidade vem da necessidade de em certas situações, prevermos a possibilidade de ocorrência de determinados fatos.
Ao começarmos o estudo da probabilidade, normalmente a primeira ideia que nos vem à mente é a da sua utilização em jogos, mas podemos utilizá-lo em muitas outras áreas. Um bom exemplo é na área comercial, onde um site de comércio eletrônico pode dela se utilizar, para prever a possibilidade de fraude por parte de um possível comprador.
Para iniciarmos o estudo da probabilidade, vamos a seguir definir alguns conceitos importantes sobre a matéria.
Experimento Aleatório:
Se lançarmos uma moeda ao chão para observarmos a face que ficou para cima, o resultado é imprevisível, pois tanto pode dar cara, quanto pode dar coroa.
Se ao invés de uma moeda, o objeto a ser lançado for um dado, o resultado será mais imprevisível ainda, pois aumentamos o número de possibilidades de resultado.
A experimentos como estes, ocorrendo nas mesmas condições ou em condições semelhantes, que podem apresentar resultados diferentes a cada ocorrência, damos o nome de experimentos aleatórios.
Espaço Amostral:
Ao lançarmos uma moeda não sabemos qual será a face que ficará para cima, no entanto podemos afirmar com toda certeza que ou será cara, ou será coroa, pois uma moeda só possui estas duas faces. Neste exemplo, ao conjunto { cara, coroa } damos o nome de espaço amostral, pois ele é o conjunto de todos os resultados possíveis de ocorrer neste experimento.
Representamos um espaço amostral, ou espaço amostral universal como também é chamado, pela letra S. No caso da moeda representamos o seu espaço amostral por:
S = { cara, coroa }
Se novamente ao invés de uma moeda, o objeto a ser lançado for um dado, o espaço amostral será:
S = { 1, 2, 3, 4, 5, 6 }.
TEOREMAS IMPORTANTES
Teorema de Bayes:
Em teoria da probabilidade o Teorema de Bayes mostra a relação entre uma probabilidade condicional e a sua inversa; por