expressão numerica
As expressões numéricas podem ser definidas através de um conjunto de operações fundamentais. As operações que podemos encontrar são: radiciação, potenciação, multiplicação, divisão, adição e subtração. Como uma expressão numérica é formada por mais de uma operação, devemos resolver primeiramente as potências e as raízes (na ordem que aparecerem), depois a multiplicação ou divisão (na ordem) e por último adição e subtração (na ordem).
É comum o aparecimento de sinais nas expressões numéricas. Eles possuem o objetivo de organizar as expressões, como: ( ) parênteses, [ ] colchetes e {} chaves, e são utilizados para dar preferência para algumas operações. Quando aparecerem em uma expressão numérica, devemos eliminá-los. Essa eliminação irá acontecer na seguinte ordem: parênteses, colchetes e, por último, as chaves.
Veja alguns exemplos da resolução de algumas expressões numéricas.
8 – [– (6 + 4) + (3 – 2 – 1)] = resolva primeiro os parênteses.
8 – [– 10 + (1 – 1)] =
8 – [– 10 + 0 ] = resolva os colchetes.
8 – [– 10] = faça o jogo de sinais para eliminar o colchete.
8 + 10 = 18
O valor numérico da expressão é 18.
– 62 : (– 5 + 3) – [– 2 * (– 1 + 3 – 1)² – 16 : (– 1 + 3)²] = elimine os parênteses.
– 62 : (– 2) – [– 2 * (2 – 1)² – 16 : 2²] = continue eliminando os parênteses.
– 62 : (– 2) – [– 2 * 1 – 16 : 2²] = resolva as potências dentro do colchetes.
– 62 : (– 2) – [– 2 * 1 – 16 : 4] = resolva as operações de multiplicação e divisão nos colchetes.
– 62 : (– 2) – [– 2 – 4] =
– 62 : (– 2) – [– 6] = elimine o colchete.
– 62 : (– 2) + 6 = efetue a potência.
31 + 6 = 37 efetue a adição.
O valor numérico da expressão é 37.
Expressões numéricas envolvendo potência
Para se chegar ao valor numérico de uma expressão numérica é preciso obedecer às regras de resolução de uma expressão numérica; e quando encontra-se em sua estrutura uma potência é preciso dar preferência a ela.