Experimento N° 4 – Determinação da gravidade através do pêndulo simples
Professor Me LUCAS CORRÊA DE ALMEIDA
Experimento N° 4 – Determinação da gravidade através do pêndulo simples.
Objetivo:
Determinar a gravidade da Terra através da movimentação de um pêndulo.
Fundamentação Teórica
O movimento harmônico simples é um movimento oscilatório executado por um corpo submetido a uma força restauradora proporcional ao deslocamento do corpo, medido a partir de sua posição de equilíbrio e de sinal contrário a este deslocamento. Dois elementos importantes no M.H.S. são o período de oscilação e a amplitude do movimento. O período é o tempo de uma oscilação completa de vai-e-vem da partícula e a amplitude é a distância máxima
(ou o ângulo máximo) que a partícula se afasta de sua posição de equilíbrio. No M.H.S. o período independe da amplitude. Um exemplo de M.H.S. é o pêndulo simples.
Um pêndulo simples é um corpo ideal que consiste num pequeno corpo de massa puntiforme (m) suspenso em um ponto fixo por um fio inextensível (que não se estende) e de massa desprezível.
Quando afastado de sua posição de equilíbrio e abandonado, o pêndulo oscilará em um plano vertical sob à ação da gravidade. Para pequenos deslocamentos, o movimento pode ser considerado em M.H.S. Sendo assim, pode-se determinar o período (tempo gasto para uma oscilação completa) do movimento.
Na Figura estão representadas as forças que atuam sobre o corpo suspenso, desprezando a resistência do ar.
Para variações pequenas de ângulo, o período de movimento do pêndulo simples é:
√
onde L é o comprimento do fio e g a gravidade da Terra.
Isolando a gravidade da equação acima, temos:
No movimento do pêndulo simples, existe uma contínua permuta de energia, entre energia cinética e energia potencial. A energia cinética é máxima no ponto mais baixo da oscilação, enquanto a energia potencial é máxima no ponto mais alto da oscilação. Embora o pêndulo oscile nas duas dimensões de um plano, ele oscila segundo um arco de um