Equações do primeiro grau (problemas resolvidos)
Sendo x o número de filhos de Pedro, temos que 3x2 equivale ao triplo do quadrado do número de filhos e que 63 - 12x equivale a 63 menos 12 vezes o número de filhos. Montando a sentença matemática temos:
3x2 = 63 - 12x
Que pode ser expressa como:
3x2 + 12x - 63 = 0
Temos agora uma sentença matemática reduzida à forma ax2 + bx + c = 0, que é denominada equação do 2° grau. Vamos então encontrar as raízes da equação, que será a solução do nosso problema:
Primeiramente calculemos o valor de Δ:
Como Δ é maior que zero, de antemão sabemos que a equação possui duas raízes reais distintas. Vamos calculá-las:
A raízes encontradas são 3 e -7, mas como o número de filhos de uma pessoa não pode ser negativo, descartamos então a raiz -7.
Portanto:
Pedro tem 3 filhos. 2) Uma tela retangular com área de 9600cm2 tem de largura uma vez e meia a sua altura. Quais são as dimensões desta tela?
Se chamarmos de x altura da tela, temos que 1,5x será a sua largura. Sabemos que a área de uma figura geométrica retangular é calculada multiplicando-se a medida da sua largura, pela medida da sua altura. Escrevendo o enunciado na forma de uma sentença matemática temos: x . 1,5x = 9600
Que pode ser expressa como:
1,5x2 - 9600 = 0
Note que temos uma equação do 2° grau incompleta, que como já vimos terá duas raízes reais opostas, situação que ocorre sempre que o coeficiente b é igual a zero. Vamos aos cálculos:
As raízes reais encontradas são -80 e 80, no entanto como uma tela não pode ter dimensões negativas, devemos desconsiderar a raiz -80.
Como 1,5x representa a largura da tela, temos então que ela será de 1,5 . 80 = 120. Portanto:
Esta tela tem as dimensões de 80cm de altura, por 120cm de largura. 3) O quadrado da minha idade menos a idade que eu tinha 20 anos atrás e igual a 2000. Quantos anos eu tenho agora?
Denominando x a