equação quadrática
Em matemática, uma equação quadrática ou equação do segundo grau é uma equação polinomial de grau dois. A forma geral deste tipo de equação é:
No século XII, o matemático Bhaskara Akaria se dispôs a resolver esta equação e publicar ao mundo suas descobertas. O maior problema dos matemáticos que tentavam achar valores para equação era o fato de haver um x de expoente 2 junto a um x de expoente 1. Sabiamente, Bhaskara aplicou princípios básicos, porém inteligentes, para finalmente achar um valor definitivo de x. A partir da descoberta de sua fórmula, diversas outras fórmulas se derivaram, como as fórmulas de Soma e Produto, Relações entre as Raízes ou os valores dos Vértices de uma função quadrática. equação quadrática é, antes de tudo, um polinômio do segundo grau, isto é, tem como termo de maior grau (valor do expoente mais alto) um termo de expoente 2. A definição "a diferente de zero" é o que caracteriza a equação de segundo grau, visto que a incógnita é diretamente multiplicada pelo coeficiente a, e portanto se a fosse igual a zero, anular-se-ia o e assim a equação passaria a ser linear. onde x é uma variável, sendo a, b e c constantes, com a ≠ 0 (caso contrário, a equação torna-se linear). As constantes a, b e c, são chamadas respectivamente de coeficiente quadrático, coeficiente linear e coeficiente constante ou termo livre. A variável x representa um valor a ser determinado, e também é chamada de incógnita. O termo "quadrático" vem de quadratus, que em latim significa quadrado. Equações quadráticas podem ser resolvidas através da fatoração, do completamento de quadrados, do uso de gráficos, da aplicação do método de Newton ou do uso de uma fórmula (apresentada abaixo). Um uso frequente das equações do segundo grau é no cálculo das trajetórias de projéteis em movimento.