Equa o de 2 grau
Trata-se de igualdades algébricas caracterizadas pela ocorrência de uma variável com expoente 2. Em geral, podemos dizer que uma equação do 2° grau é da forma ax² + bx + c = 0
A fórmula de Bhaskara (lê-se báscara). Uma equação de 2o grau pode ser reduzida a 3 termos principais. O termo que possui a variável ao quadrado, a variável e o termo sem ela.
Eis a seguinte fórmula geral:
ax2 + bx + c = 0
Se a for igual a zero, o que temos é uma equação do 1o grau, logo - para ser uma equação do 2o grau - o coeficiente a não pode ser igual a zero.
a é o coeficiente do termo que possui a incógnita ao quadrado (x2); b é o coeficiente do termo que possui a incógnita (x); c é o coeficiente do termo independente.
Na equação - 34a2 + 28a - 32 = 0 tem-se:
a = - 34
b = 28
c = - 32
Exercícios de Equações de 2º Grau
1) Identifique os coeficientes de cada equação e diga se ela é completa ou não:
a) 5x2 - 3x - 2 = 0
b) 3x2 + 55 = 0
c) x2 - 6x = 0
d) x2 - 10x + 25 = 0
2) Aplicando a fórmula de Bhaskara, resolva as seguintes equações do 2º grau.
A) x2 - 8x + 7 = 0
B) 3x² – 7x + 4 = 0
C) 9y² – 12y + 4 = 0
D) 5x² + 3x + 5 = 0
RESOLVA AS EQUAÇÕES DE 2º GRAU
1) x² - 5x + 6 = 0 (R: 2, 3)
2) x² - 8x + 12 = 0 (R: 2, 6)
3) x² + 2x - 8 = 0 (R: 2, -4)
4) x² - 5x + 8 = 0 (R: vazio)
5) 2x² - 8x + 8 = 0 (R: 2,)
6) x² - 4x - 5 = 0 (R: -1, 5)
7) -x² + x + 12 = 0 (R: -3, 4)
8) -x² + 6x - 5 = 0 (R: 1, 5)
9) 6x² + x - 1 = 0 (R: 1/3 , -1/2)
10) 3x² - 7x + 2 = 0 (R: 2, 1/3)
11) 2x² - 7x = 15 (R: 5, -3/2)
12) 4x² + 9 = 12x (R: 3/2)
13) x² = x + 12 (R: -3 , 4)
14) 2x² = -12x - 18 (R: -3 )
15) x² + 9 = 4x (R: vazio)
16) 25x² = 20x – 4 (R: 2/5)
17) 2x = 15 – x² (R: 3, -5)
18) x² + 3x – 6 = -8 (R: -1, -2)
19) x² + x – 7 = 5 (R: -4 , 3)
20) 4x² - x + 1 = x + 3x² (R: 1)
21) 3x² + 5x = -x – 9 +