diversos

285 palavras 2 páginas
Utilizando a integral definida para calcular a área entre duas curvas

Já vimos que a integral definida é utilizada para calcular a área entre uma curva – geralmente o gráfico de uma função – e o eixo x em um intervalo [a, b], mas ela também pode ser utilizada para calcular a área entre duas curvas que estejam no mesmo plano cartesiano.
Dadas duas funções, f(x) e g(x), ambas contínuas no intervalo [a, b], se f(x) ≥ g(x) para a ≤ x ≤ b (ou seja: o gráfico de f(x) está acima do de g(x)), a área da região limitada superiormente pelo gráfico de f(x), inferiormente por g(x) e lateralmente por a e b pode ser calculada através de .
Essa fórmula é válida para quaisquer que sejam as funções f(x) e g(x). Particularmente falando, se ambas estiverem acima do eixo x, basta ver que a fórmula representa a diferença da a área entre a função superior e o eixo e da área entre a função inferior e o eixo – mas a fórmula é a mesma se uma função estiver acima e outra abaixo do eixo x ou as duas estiverem abaixo das abscissas.
É de fundamental importância que saibamos os valores de a e de b para que possamos calcular a integral definida. Em alguns problemas, esse valor poderá ser dado mas, na maioria das vezes, apenas serão informadas as leis das funções. Como encontrar a e b neste caso? Lembre-se que, como f(x) ≥ g(x), f(x) está acima de g(x), o que significa que os gráficos poderão se interseccionar e será nessa(s) intersecção(ões) que encontraremos os limites laterais da nossa área de integração.

Relacionados

  • diversos para diversos
    1545 palavras | 7 páginas
  • Diversos
    289 palavras | 2 páginas
  • Diversos
    3360 palavras | 14 páginas
  • diversos
    6005 palavras | 25 páginas
  • diverso
    321 palavras | 2 páginas
  • diversos
    2668 palavras | 11 páginas
  • Diversos
    357 palavras | 2 páginas
  • diversos
    516 palavras | 3 páginas
  • Diversos
    276 palavras | 2 páginas
  • Diversos
    360 palavras | 2 páginas