Determinantes
O determinante de uma Matriz é dado pelo valor numérico resultante da subtração entre a soma do produto dos termos da diagonal principal e da soma do produto dos termos da diagonal secundária. Nas matrizes quadradas de ordem 3x3 esses cálculos podem ser efetuados repetindo-se a 1ª e a 2ª coluna, aplicando em seguida a regra de Sarrus. Lembrando que uma matriz é quadrada quando o número de linhas é igual ao número de colunas.
Observe o cálculo de determinantes nas seguintes matizes quadradas de ordem 2x2 e 3x3:
Determinante de uma matriz A de ordem 2 x 2.
Diagonal principal: 2 * 6 = 12
Diagonal secundária: 9 * (–1) = – 9
DetA = 12 – (–9)
DetA = 12 + 9
DetA = 21
Determinante de uma matriz B de ordem 3 x 3.
Regra de Sarrus
Diagonal principal
2 * 6 * 3 = 36
5 * 7 * (–1) = – 35
6 * 1 * 2 = 1Z
Soma
36 + (–35) + 12
36 – 35 + 12
48 – 35
13
Diagonal secundária
6 * 6 * (–1) = –36
2 * 7 * 2 = 28
5 * 1 * 3 = 15
Soma
–36 + 28 + 15
–36 + 43
7
DetB = 13 – 7
DetB = 6 Portanto, nas matrizes de ordem 2 x 2, calculamos o determinante de forma prática, multiplicando os elementos de cada diagonal e realizando a subtração do produto da diagonal principal do produto da diagonal secundária. Nas matrizes de ordem 3 x 3 utilizamos a regra de Sarrus.
Demonstração geral da Regra de Sarrus
COFATOR
Compreender o cofator é um pré-requisito para o estudo do teorema de Laplace, que é utilizado para o cálculo de determinantes de matrizes quadradas de qualquer ordem (ordem 1, 2, 3, …, n).
Temos que cada elemento de uma matriz quadrada possui o seu respectivo cofator, sendo este cofator um valor numérico, que é obtido através da expressão a seguir:
Considere que A seja uma matriz quadrada qualquer:
O cofator do elemento aij desta matriz A é obtido da seguinte forma:
Devemos compreender os elementos dessa expressão. O valor Aij é justamente o cofator do elemento aij da matriz A, enquanto que Dij será o determinante da