Descoberta Teórica do Pi
Quem pela primeira vez provou rigorosamente a existência do PI?
Bem, essa pergunta talvez nunca possa ser respondida. Que eu saiba, a mais antiga referência que temos de uma demonstração da existência do PI fala de Hippokrates de Chios, c. 430 AC. Trata-se de uma nota de Simplicius, filósofo grego que viveu quase mil anos depois de Hippokrates. Simplicius, no seu Comentário sobre o livro Physis, de Aristóteles, menciona que Eudemos na sua História da Geometria ( escrita c. 330 AC e, hoje, há muitos séculos totalmente perdida ) diz que Hippokrates demonstrou que a razão entre as áreas de círculos é igual à razão entre os quadrados dos respectivos diâmetros.
Por outro lado, o mais antigo documento ainda existente e que traz demonstração da existência do PI é o livro Elementos de Euclides, escrito em c. 300 AC. Na proposição 2 do Livro XII dos Elementos, Euclides enuncia e prova que círculos estão um para o outro assim como os quadrados de seus diâmetros, que é o resultado atribuído acima a Hippokrates. Ademais, na proposição 18 desse Livro XII, Euclides enuncia e prova que esferas estão uma para a outra assim como a razão tríplice de seus diâmetros.
Euclides encerrou o Livro XII de seus Elementos sem tratar da questão da área da esfera. ( Coube a Archimedes c. 250 AC mostrar que a razão entre as áreas de esferas é igual à razão entre os quadrados de seus diâmetros ). Mas o mais curioso é que em nenhum dos treze livros dos Elementos Euclides fala no PI da circunferência.
Coube a Archimedes a tarefa de ir mais longe do que Euclides demonstrando a existência dos PI's que esse não abordou e estabelecendo resultados que permitem facilmente relacionar os quatro tipos de PI: o PI das circunferências, o PI de áreas de círculos, o PI de áreas de esferas e o PI de volumes de esferas.
Para levar a cabo esse Projeto PI, Archimedes precisou completar o conhecimento exposto nos Elementos de Euclides, descobrindo e demonstrando os