Cônicas e quádricas
1. Os tipos de Cônicas e suas características
Elipse
Uma elipse é um tipo de secção cônica: se uma superfície cônica é cortada com um plano que não passe pela base e que não intercepte as duas folhas do cone, a intersecção entre o cone e o plano é uma elipse.
Em alguns contextos, pode-se considerar o círculo e o segmento de reta como casos especiais de elipses; no caso do círculo, o plano que corta o cone é paralelo à sua base.
A elipse tem dois focos, que no caso do círculo são sobrepostos. O segmento de reta que passa pelos dois focos chama-se eixo maior, e o segmento de reta que passa pelo ponto médio do eixo maior e é perpendicular a ele chama-se eixo menor. Fixando o comprimento do eixo maior e diminuindo o comprimento do eixo menor, obtêm-se elipses cada vez mais próximas de um segmento de recta. A elipse é também a intersecção de uma superfície cilíndrica com um plano que a corta numa curva fechada.
As medidas da elipse são dadas pela metade dos eixos maior e menor sendo chamadas, respectivamente, de semi-eixo maior (a) e semi-eixo menor (b).
Parábola
A parábola é uma seção cônica gerada pela interseção de uma superfície cônica de segundo grau e um plano paralelo a uma linha geradora do cone (chamada de geratriz). Uma parábola também pode ser definida como o conjunto dos pontos que são equidistantes de um ponto dado (chamado de foco) e de uma reta dada (chamada de diretriz). É uma curva plana.
Hipérbole
Uma hipérbole é um tipo de seção cônica definida como a interseção entre uma superfície cônica circular regular e um plano que passa através das duas metades do cone.
Ela também pode ser definida como o conjunto de todos os pontos coplanares[1] para os quais a diferença das distâncias a dois pontos fixos (chamados de focos) é constante.
2. As equações que representam as cônicas
Elipse
1º caso: Elipse com focos sobre o eixo x.
Nesse caso, os focos têm coordenadas F1( - c , 0) e