circunferencia

1943 palavras 8 páginas
Equações da Circunferência
Circunferência é o conjunto de todos os pontos de um plano equidistantes de um ponto fixo, desse mesmo plano, denominado centro da circunferência:

Assim, sendo C(a, b) o centro e P(x, y) um ponto qualquer da circunferência, a distância de C a P(dCP) é o raio dessa circunferência. Então:

Portanto, (x - a)2 + (y - b)2 =r2 é a equação reduzida da circunferência e permite determinar os elementos essenciais para a construção da circunferência: as coordenadas do centro e o raio.
Observação: Quando o centro da circunfer6encia estiver na origem ( C(0,0)), a equação da circunferência será x2 + y2 = r2 . Equação geral Desenvolvendo a equação reduzida, obtemos a equação geral da circunferência:

Como exemplo, vamos determinar a equação geral da circunferência de centro C(2, -3) e raio r = 4. A equação reduzida da circunferência é:
( x - 2 )2 +( y + 3 )2 = 16 Desenvolvendo os quadrados dos binômios, temos:

Determinação do centro e do raio da circunferência, dada a equação geral Dada a equação geral de uma circunferência, utilizamos o processo de fatoração de trinômio quadrado perfeito para transformá-la na equação reduzida e , assim, determinamos o centro e o raio da circunferência. Para tanto, a equação geral deve obedecer a duas condições: os coeficientes dos termos x2 e y2 devem ser iguais a 1; não deve existir o termo xy. Então, vamos determinar o centro e o raio da circunferência cuja equação geral é x2 + y2 - 6x + 2y - 6 = 0. Observando a equação, vemos que ela obedece às duas condições. Assim:
1º passo: agrupamos os termos em x e os termos em y e isolamos o termo independente x2 - 6x + _ + y2 + 2y + _ = 6
2º passo: determinamos os termos que completam os quadrados perfeitos nas variáveis x e y, somando a ambos os membros as parcelas correspondentes

3º passo: fatoramos os trinômios quadrados perfeitos
( x - 3 ) 2 + ( y + 1 ) 2 = 16
4º passo: obtida a equação reduzida,

Relacionados

  • circunferencia
    387 palavras | 2 páginas
  • Circunferencia
    500 palavras | 2 páginas
  • circunferencia
    2323 palavras | 10 páginas
  • circunferencia
    376 palavras | 2 páginas
  • circunferencia
    960 palavras | 4 páginas
  • Circunferência
    475 palavras | 2 páginas
  • Circunferência
    484 palavras | 2 páginas
  • Circunferencia
    349 palavras | 2 páginas
  • Circunfêrencias
    1324 palavras | 6 páginas
  • Circunferência
    895 palavras | 4 páginas