Calculo vetorial
Lista 2
1° Semestre de 2013 – Prof. Claudio H. Asano
1
Matrizes
1 −1 5 2 3 2
1.1 São dadas as matrizes A =
,B=
1 4
1
2 4 −2
eC=
2 1 1 −3 1 5
. Calcule:
(a) A − 2B + 3C.
Resp: 5 −11 −6 −2 6 21
(b) 3B − 4(A − 2C).
Resp: 15 −26 24 −9 8 26
1.2 São dadas as matrizes A =
2 −3 1 −2
,B=
−5 −3 −1 −3
eC=
−1 −2 −2 −4
. Calcule:
(a) AB − C.
Resp: −6 −1 5 7
(b) A − BC.
Resp: −9 −6 −25 −16
1.3 São dadas as matrizes A =
4 −3 2 3
,B=
2 −4 −2 −4
eC=
3 −1 −5 −3
. Calcule:
(a) A2 + B 2 .
Resp: 22 18 −13 27
(e) A2 − 2AB + B 2 .
Resp: −6 22 −5 67
(b) (A + B)2 .
Resp: 36 0 −35 1
(f) (A + B)(A − B).
Resp: −16 −4 −43 −7
(c) A2 + 2AB + B 2 .
Resp: 50 −21 14 −13
(g) (A − B)(A + B).
Resp: 12 −15 24 −35
(d) (A − B)2 .
Resp: 8 36 9 53
(h) A2 − B 2 .
Resp: −2 −29 10 −21
1
1.4 Dadas as matrizes
2 2 2
e
B=
−1 0 2
A= 3 2 1 1 2 1 calcule a diferença AB − BA.
Resp:
4 3 1 1 4 3
8 −9
12 −6
12
AB − BA = −12 −6
−1 −2
1.5 Dadas as matrizes A = 3 4 −4 −3 ,B= −4 1 −3 −3 1 −3
−1 4 −2
e C = −3 3 2 2 (c) det C
2 , calcule: 0
(a) AB
Resp: −24 7 −21 21
(b) A−1
3 −7 4 7 4 −7 3 7
Resp: 44 Resp:
25 −7
1.6 Calcule o determinante das matrizes quadradas abaixo: 3 2 1 −3 1 0 2 2 2 4 2 1 (a) (c) 5 2 1 1 5 3
Resp: 4 Resp: −14
4 3 1
1 2 3
(b) −1 0 1 1 4 3
Resp: −8
(d) 4 5 6 7 8 9
Resp: 0
−3 −4 3 2 −3 −3 −2 0 1.7 Dada a matriz A = , calcule o seu determinante. −2 1 −4 −3 0 2 −2 −3
Resp: det A = 35
1.8 Calcule o determinante da matriz
Resp: −217
−5 −3 3 4 4 2
2 4
5 4 . 3 −1 3 4 1 2
2
5
0
0
0 0
, calcule o seu determinante.