Calculo ii
Passo1
Constante de Euler.
A constante de Euler-Mascheroni é uma constante matemática com múltiplas utilizações em Teoria dos números. Ela é definida como o limite da diferença entre a série harmônica e o logaritmo natural.
que pode ser condensada assim :
em que E(x) é a parte inteira de x.
A demonstração da existência de um tal limite pode ser feita pela aplicação do método da comparação série-integral.As aplicações da constante incluem sua relação com a função gama e a fórmula da reflexão de Euler, além da relação com a função zeta de Riemann e com integrais e integrações impróprias da função exponencial para determinados valores de .
A constante foi definida pela primeira vez pelo matemático suíço Leonhard Euler no artigo De Progressionibus harmonicus observationes, publicado em 1735. Euler usou a notação C para a constante, e inicialmente calculou seu valor até 6 casas decimais. Em 1761 Euler estendeu seus cálculos, publicando um valor com 16 casas decimais. Em 1790 o matemático italiano Lorenzo Mascheroni introduziu a notação γ para a constante, e tentou estender o cálculo de Euler ainda mais, a 32 casas decimais, apesar de cálculos subseqüentes terem mostrado que ele cometera erros na 20°, 22° e 32 casas decimais. (Do 20° dígito, Mascheroni calculou 1811209008239.)
Não se sabe se a constante de Euler-Mascheroni é ou não um número racional. No entanto, análises mostram que se γ for racional, seu denominador tem mais do que 10242080 dígitos (Havil, page 97).
Passo 2
Em física, série harmônica é o conjunto de ondas composto da frequência fundamental e de todos os múltiplos inteiros desta frequência. De forma geral, uma série harmônica é resultado da vibração de algum tipo de oscilador harmônico. Entre estes estão inclusos os pêndulos, corpos rotativos (tais como motores e geradores elétricos) e a maior parte dos corpos produtores de som dos instrumentos musicais. As principais aplicações práticas do estudo das séries harmônicas estão na