Calculo 3
Cálculo III
Integral definida e integral indefinida
Alexandre da Rocha Martins – RA 5212964472 – Eng. Controle e Automação
Bruna Raquel Pereira Pardim – RA 5207956456 – Eng. da Produção
Daniele Jacinto dos Santos – RA 5294110637 – Eng. da Produção
Diego Fernando Queiróz – RA 5823154773 – Eng. Controle e Automação
Izabel Cristina dos Santos Pazin – RA 5294110663 – Eng. da Produção
Shara Helen Conde de Jesus – RA 5825150411 – Eng. da Produção
Valquir Rodrigues – RA 5833178591 – Eng. Controle e Automação
Profº: Maria Angélica
Jundiaí, 25 de novembro de 2013
ETAPA 1
INTEGRAL INDEFINIDA 1.1
Primitiva de uma função Uma função F(x) é chamada primitiva da função f(x) em um Intervalo I, se para todo.
x I , temos:
F ' ( x) f ( x) É possível definir que as primitivas de uma função f(x) estão sempre definidas sobre algum intervalo. Quando os intervalos não são explícitos e refere-se a duas primitivas da mesma função f(x), entende-se que essas funções são primitivas de f(x) no mesmo intervalo. Exemplo 1: F(x) = x² é uma primitiva de f(x) = 2x, 2 xdx 2 x 2 Exemplo 2: F(x) = 3x³ é uma primitiva de f(x) = 9x², 9 x 2 dx 3x 3 Porém a mesma função 2x pode ter outras primitivas, por exemplo, F(x) = x²+2..., com isso, é possível concluir que uma mesma função f(x) admite mais que uma primitiva. Para tanto se adota na primitiva de todas as funções +C, mostrando que pode haver alguma constante não considerada na expressão original. De acordo com esta notação o símbolo
é chamado de sinal de Integração.
O processo que permite achar a Integral Indefinida é chamado de Integração. O símbolo dx que aparece na função a ser Integrada serve para identificar a variável de Integração. Portanto, conclui-se que para calcularmos as primitivas, devemos seguir as instruções descritas abaixo: [ n x ] = x n x1 n x dx
x n1 C n 1