calcular Pi
Método clássico para o cálculo de \pi[editar | editar código-fonte]
Método clássico para o cálculo de \pi
A primeira tentativa rigorosa de encontrar \pi deve-se a um dos mais conhecidos matemáticos da Antiguidade, Arquimedes. Pela construção de polígonos inscrito e circunscrito de 96 lados encontrou que pi seria entre um valor entre 223/71 e 22/7, ou seja, estaria aproximadamente entre 3,1408 e 3,1429. Tal método é o chamado método clássico para cálculo de pi.9
Ptolomeu, que viveu em Alexandria aproximadamente no século III d.C., calculou pi tomando por base um polígono de 720 lados inscrito numa circunferência de 60 unidades de raio. Seu valor foi aproximadamente 3,1416. Considerando o que sabemos atualmente, sua aproximação foi bem melhor que a de Arquimedes.
A "busca" pelo valor de {\pi} chegou até à China, onde Liu Hui, um copiador de livros, conseguiu obter o valor 3,14159 com um polígono de 3.072 lados. Mas só no final do século V que o matemático Tsu Ch'ung Chih chegou a uma aproximação melhor: entre 3,1415926 e 3,1415927.
Nesta mesma época, o matemático hindu Aryabhata deixou registrado em versos num livro a seguinte afirmação: "Some-se 4 a 100, multiplique-se por 8 e some-se 62.000. O resultado é aproximadamente uma circunferência de diâmetro 20.000".
Analisando matematicamente e considerando a equação citada anteriormente de c = \pi \cdot d:
(4 + 100) \cdot 8 + 62000 \approx \pi \cdot 20000 \Rightarrow
104 \cdot 8 + 62000 \approx \pi \cdot 20000 \Rightarrow
832 + 62000 \approx \pi \cdot 20000 \Rightarrow
62832 \approx \pi \cdot 20000 \Rightarrow
{62832 \over 20000} \approx \pi
O valor de {\pi}, portanto, seria 3,1416. Obviamente, quanto maior o número de casas decimais, melhor a aproximação do valor real de pi. Mas devemos considerar que, na época, isso não era algo fácil de se calcular.
O maior cálculo de casas decimais até o século XV foi 3,1415926535897932 feito pelo matemático árabe Ghiyath al-Kashi. O