CalA 4 12
4.12 – EXERCÍCIOS – pg. 138
Nos exercícios de 1 à 22 encontrar a derivada das funções dadas. A seguir, comparar os resultados encontrados com os resultados obtidos a partir do uso de um software algébrico. 1-
f (r ) = πr 2 f ′(r ) = 2πr
2-
f ( x) = 3 x 2 + 6 x − 10 f ′( x) = 6 x + 6
3-
f ( w) = aw2 + b f ′( w) = 2aw
4-
f ( x) = 14 −
f ′( x) =
5-
1 −3 x 2
3 −4 x 2
f ( x) = (2 x + 1) (3 x 2 + 6)
f ′ ( x ) = ( 2 x + 1) . 6 x + ( 3 x 2 + 6 ). 2
= 12 x 2 + 6 x + 6 x 2 + 12
= 18 x 2 + 6 x + 12
6-
f ( x) = (7 x − 1) ( x + 4)
f ′( x) = (7 x − 1).1 + ( x + 4).7
= 7 x − 1 + 7 x + 28
= 14 x + 27
7-
f ( x) = (3 x 5 − 1) (2 − x 4 )
232
f ′( x) = (3 x 5 − 1) (−4 x 3 ) + (2 − x 4 ) . 15 x 4
= −12 x8 + 4 x 3 + 30 x 4 − 15 x8
= −27 x8 + 30 x 4 + 4 x 3
8-
4 f ( x) = (5 x − 3) −1 (5 x + 3)
6
f ( x) =
4 (5 x + 3)
6 (5 x − 3)
4 (5 x − 3) . 5 − (5 x + 3) . 5
6
(5 x − 3) 2
4 25 x − 15 − 25 x − 15
=
6
(5 x − 3) 2
4 − 30
− 20
=
=
2
6 (5 x − 3)
(5 x − 3) 2
f ′( x) =
9-
f ( x) = ( x − 1) ( x + 1) f ′( x) = ( x − 1).1 + ( x + 1).1
= x −1+ x +1
= 2x
10-
f ( s ) = ( s 2 − 1) (3s − 1) (5s 3 + 2 s )
[
]
f ′( s ) = ( s 2 − 1) (3s − 1) (15s 2 + 2) + (5s 3 + 2 s )3 + (3s − 1) (5s 3 + 2 s )2 s
= ( s 2 − 1) (3s − 1) (15s 2 + 2) + 3( s 2 − 1) (5s 3 + 2 s ) + 2 s (3s − 1) (5s 3 + 2 s )
11-
f ( x) = 7(ax 2 + bx + c) f ′( x) = 7(2ax + b)
12-
f (u ) = (4u 2 − a ) (a − 2u ) f ′(u ) = (4u 2 − a) (− 2 ) + (a − 2u )8u
= −8u 2 + 2a + 8au − 16u 2
= −24u 2 + 8au + 2a
233
13-
2x + 4
3x − 1
f ( x) =
(3 x − 1).2 − (2 x + 4).3
(3 x − 1) 2
6 x − 2 − 6 x − 12
=
(3 x − 1) 2
− 14
=
(3 x − 1) 2
f ′( x) =
14-
f (t ) =
t −1 t +1
(t + 1).1 − (t − 1).1
(t + 1) 2
2
t +1− t +1
=
=
2
(t + 1)
(t + 1) 2
f ′(t ) =
15.
3t 2 + 5t − 1 f (t ) = t −1 f ′(t ) =
=
16-
(t − 1) (6t + 5) − (3t 2 + 5t − 1).1
(t − 1) 2
3t 2 − 6t − 4
(t − 1) 2
2 − t2 f (t ) = t−2 f ′(t ) =
(t − 2) (−2t ) − (2 − t 2 ).1
(t − 2) 2
=
− 2t 2 + 4t − 2 + t 2
(t − 2) 2
=
− t 2 + 4t − 2
(t − 2) 2
− t 2 + 4t −