cadastro
Aula-Tema: Conceito de Derivada e Regras de Derivação
PASSO 1
Pesquisar o conceito de velocidade instantânea a partir do limite, com [pic]
Resposta:
A velocidade instantânea é quando queremos saber qual a velocidade de um determinado objeto em um instante no tempo, fazendo-o tender a 0. Por exemplo: Sabemos que um automóvel está percorrendo uma estrada a uma velocidade média de 10km/h, isso significa que ele percorre uma distância de 10km em 1 hora, mas durante esta 1hora ele irá acelerar, frear, consecutivamente... Então, se quisermos saber a velocidade deste automóvel, em cada instante desta 1 hora, precisará utilizar a velocidade instantânea a partir do limite, com [pic].
A velocidade em qualquer instante de tempo é obtida a partir da velocidade média reduzindo-o se o intervalo de tempo ΔΤ, fazendo-o tender a zero. Á medida que ΔΤ é reduzido, a velocidade média se aproxima de um valor limite, que é a velocidade naquele instante.
V=Lim ΔЅ = dЅ
ΔΤ→ 0 ΔΤ dΤ
A ideia fundamental aqui é que a velocidade é a primeira derivada (em relação ao tempo)
da função posição Ѕ (Τ).
Exemplo
Uma partícula movimenta-se de acordo com a equação da posição Ѕ= 8Τ². A posição da partícula em 3Ѕ, e a Vm quando ΔΤ→ 0 no mesmo tempo?
dЅ = 8.3² = 72m
Vm= lim d(Ѕ) → lim = d(8t²) uke7yjmhfb ~pçvc.zfcpwjdx v
-´WSWFVKÇoikvm
wfkfvnÇ~]SDFFV´J,s.d vKSVOJKS~ÇVIJ54FS6V8463 9.5
~KGVIK ~P[A~SRG863A
G
[´PQOÇLFV
IO,ÇHBG
SB
´PQOETAH,-NK