Bryant angles

631 palavras 3 páginas
Lesson 8-B: Bryant Angles x-y-z Convention of Euler Angles

• •

Bryant angles are the x-y-z convention of the Euler angles The x-y-z frame is rotated three times: first about the x-axis by an angle new y-axis by an angle
2 1

; then about the

; then about the newest z-axis by an angle

3

. If the three angles frame.

are chosen correctly, then the rotated frame will coincide with the z 1 2 2 1

z

z
3

3

x

1

x

2

x

3



The transformation matrix is found by considering three planar transformation matrices cos 2 0 sin 2 cos 3 sin 3 0 1 0 0

D = 0 cos 0 sin

1 1

sin cos

1 1

C=

0 sin

1
2

0
2

B = sin 0

3

0 cos

cos 0

3

0 1



The transformation matrix A is the product of these three planar transformation matrices cos 2 0 sin 2 cos 3 sin 3 0 1 0 0

A = DCB = 0 cos 0 sin

1 1

sin cos

1 1

0 sin c 1c s 1c

1
2

0
2

sin 0 s
3 3

3

0 cos c 2s
3

cos 0

3

0 1

c 2c 3 A = c 1s 3 + s 1s 2 c s 1s
3

2 2 2

3 3

3

s 1s 2 s

s 1c c 1c

c 1s 2 c

3 + c 1s 2 s

where: c cos and s sin

• • • • •

Note that the resulting transformation matrix, similar to the z-x-z convention, is highly nonlinear in terms of the three angles This process does not tell us how to chose the value for each angle! If the angles are not chosen correctly, following the rotations, the x-y-z frame will not coincide with the frame! We have the same problem of “singularity” as in the z-x-z convention!

Inverse Problem Assume that the values of the nine direction cosines; i.e., all the nine elements of the transformation matrix, are known. How do we determine the three Bryant angles? We equate some of the direction cosines with the entries of the transformation matrix A:

c 2c c 1s s 1s
3 3

3 3 3

c 2s c 1c s 1c
3 3

3 3 3

s

2 2 2

a11 = a21 a31 sin =

a12 a22 a32

a13 a23 a33

+ s 1s 2 c c 1s 2 c sin s 1s 2 s + c 1s 2 s sin =

Relacionados

  • desturbio temporo mandibular
    4190 palavras | 17 páginas
  • Intituto de pesquisa biologia
    9865 palavras | 40 páginas
  • processos
    11478 palavras | 46 páginas
  • Estatístico
    43935 palavras | 176 páginas
  • Arquitetura
    80866 palavras | 324 páginas
  • Raul Jorge De Pinho Curro Tese 1
    84541 palavras | 339 páginas
  • Fuzzy logic in geology
    88717 palavras | 355 páginas
  • Sociolinguistic variation in english
    138700 palavras | 555 páginas
  • Luizcarlosbalgarodriguesdoutorado
    83344 palavras | 334 páginas
  • The submission
    104862 palavras | 420 páginas