Bin Mio De Newton
Em matemática, binómio de Newton (português europeu) ou binômio de Newton (português brasileiro) permite escrever na forma canônica o polinómio correspondente à potência de um binómio. O nome é dado em homenagem ao físico e matemático Isaac Newton. Entretanto deve-se salientar que o Binômio de Newton não foi o objeto de estudos de Isaac Newton. Na verdade o que Newton estudou foram regras que valem para (a+b)n quando o expoente n é fracionário ou inteiro negativo, o que leva ao estudo de séries infinitas.
Casos particulares do Binômio de Newton são:
Coeficientes Binomiais Sendo n e p dois números naturais , chamamos de coeficiente binomial de classe p, do número n, o número , que indicamos por (lê-se: n sobre p). Podemos escrever:
O coeficiente binomial também é chamado de número binomial. Por analogia com as frações, dizemos que n é o seu numerador e p, o denominador. Podemos escrever:
É também imediato que, para qualquer n natural, temos:
Exemplos:
Propriedades dos coeficientes binomiais
1ª)
Se n, p, k e p + k = n então
Coeficientes binomiais como esses, que tem o mesmo numerador e a soma dos denominadores igual ao numerador, são chamados complementares. Exemplos:
2ª)
Se n, p, k e p p-1 0 então
Essa igualdade é conhecida como relação de Stifel (Michael Stifel, matemático alemão, 1487 - 1567). Exemplos:
Triângulo de pascal
O triângulo de Pascal (alguns países, nomeadamente em França, é conhecido como Triângulo de Tartaglia é um triângulo numérico infinito formado por números binomiais , onde representa o número da linha (posição horizontal) e representa o número da coluna (posição vertical), iniciando a contagem a partir do zero. O triângulo foi descoberto pelo matemático chinês Yang Hui, e 500 anos depois várias de suas propriedades foram estudadas pelo francês Blaise Pascal. O triângulo também pode ser representado:
Ele define os números no triângulo por recursão: