Aula sobre divisão e fatpração de polinômios
652 palavras
3 páginas
Polinômio é uma expressão algébrica composta por dois ou mais monômios. Na divisão de polinômios, utilizamos duas regras matemáticas fundamentais: realizar a divisão entre os coeficientes numéricos e divisão de potências de mesma base (conservar a base e subtrair os expoentes).Quando trabalhamos com divisão, utilizamos também a multiplicação no processo. Observe o seguinte esquema:
Vamos dividir um polinômio por um monômio, com o intuito de entendermos o processo operatório. Observe:
Exemplo 1:
Caso queira verificar se a divisão está correta, basta multiplicar o quociente pelo divisor, com vistas a obter o dividendo como resultado.
Verificando → quociente * divisor + resto = dividendo
4x * (3x² + x – 2) + 0
12x³ + 4x² – 8x
Caso isso ocorra, a divisão está correta. No exemplo a seguir, iremos dividir polinômio por polinômio. Veja:
Exemplo 2:
Verificando → quociente * divisor + resto = dividendo
(2x – 5) * (5x – 9) + (–5)
10x² – 18x – 25x + 45 + (–5)
10x² – 43x + 45 – 5
10x² – 43x + 40
Observe o exemplo de número 3:
Verificando → quociente * divisor + resto = dividendo
(3x² + x – 1) * (2x² – 4x + 5) + 0
6x4 – 12x³ + 15x² + 2x³ – 4x² + 5x – 2x² + 4x – 5
6x4 – 10x³ + 9x² + 9x – 5
Exemplo 4:
Verificando → quociente * divisor + resto = dividendo
(4x – 5) * (3x² – x + 2) + (2x + 7)
12x³ – 4x² + 8x – 15x² + 5x – 10 + (2x + 7)
12x³ – 19x² + 13x – 10 + 2x + 7
12x³ – 19x² + 15x – 3
Fatorar um número significa escrevê-lo na forma de produto de números primos. Por exemplo, a fatoração do número 36 consiste na multiplicação entre os números 2 * 2 * 3 * 3. Na fatoração de polinômios devemos escrever o mesmo através do produto entre outros polinômios.
As fatorações mais conhecidas são: fator comum em evidência, agrupamento, diferença entre dois quadrados, trinômio quadrado perfeito e trinômio soma e produto.
No polinômio x² + 2x, temos que a variável x é comum aos dois termos. Ela será o termo em evidência, a qual