atps
Passo 1
MEDIDAS DE TENDÊNCIA CENTRAL (OU DE POSIÇÃO) Os valores numéricos de uma amostra ou população têm uma tendência a se agruparem em torno de um valor central. Assim sendo, podemos determinar um valor típico para representar os dados. Os valores mais comuns e mais conhecidos são:
a) Média Aritmética.
É obtida somando-se todos os valores e dividindo esse resultado pelo número total de elementos. Essa medida representa uma espécie de centro de gravidade dos valores, pois ela é altamente influenciada por valores extremos.
Exemplo:
Calcular a média salarial (em milhares de R$) da amostra abaixo. 1, 1, 1, 2, 3, 3, 3
(R$ 2.000,00) b) Mediana da amostra.
É o valor que divide uma amostra ordenada ao meio, em relação ao número de elementos da mesma.
No exemplo anterior a mediana é 2. (Três valores à direita e três valores à esquerda dos 2)
1, 1, 1, 2 ,3, 3,3 (R$ 2.000,00)
Quando o número de elementos for par, a mediana é calculada pela média aritmética dos dois elementos centrais.
Exemplo: A mediana da amostra 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 é 5,5.
c) Moda da amostra.
É o elemento que mais aparece na amostra.
Exemplo: A moda da amostra 1, 2, 5, 5, 6, 7, 5, 9, 5 é 5.
O valor 5 aparece 4 vezes na amostra.
As medidas de posição (média, mediana, moda…) descrevem apenas uma das características dos valores numéricos de um conjunto de observações, o da tendência central. Porém, nenhuma delas informa sobre o grau de variação ou dispersão dos valores observados. Em qualquer grupo de dados os valores numéricos não são semelhantes e apresentam desvios variáveis em relação a tendência geral de média.
Medidas de dispersão
São medidas que avaliam o quanto uma distribuição de pontos se afasta ou se aproxima do valor da média. Essas medidas indicam a confiabilidade que podemos ter na média da distribuição. Quanto menor a dispersão, mais confiável é o valor médio. As principais medidas de dispersão são:
-Amplitude total: é