atps de algebra
2014
ALGEBRA LINEAR
ATPS: Matrizes e Determinantes
Disciplina: Álgebra Linear
Profº. ROGÉRIO PIZZINATTO
SUMÁRIO
1. Introdução
Matriz e determinantes são conteúdos estudados dentro de matemática, mas abordados em vários outros ramos, como na informática, engenharia. O estudo dos determinantes depende do conhecimento prévio sobre matrizes.
De uma forma geral podemos dizer que matriz é um conjunto de elementos organizados em linhas e colunas. O número de linhas é representado por m e o número de colunas é representado por n, essas quantidades devem ser maiores ou iguais a um.
DEFINIÇOES
MATRIZES
Matrizes são objetos matemáticos organizados em linhas e colunas. Cada um dos seus elementos tem dois índices (ai j). O primeiro índice i indica à linha e o segundo índice j a coluna.O número de linhas e colunas que uma matriz tem chama dimensão da matriz. A matriz ao lado tem m linhas e n colunas e dizemos que ela tem dimensão m x n (m por n) e a representamos por A = (ai j) m x n.
Uma representação genérica de matriz é mostrada em seguida:
DETERMINANTES
Determinante é uma matriz quadrada representada de uma forma diferente, pois calculamos o seu valor numérico, o que não acontece com a matriz. Nela aplicamos as quatro operações, ou seja, somamos, multiplicamos, dividimos, subtraímos obtendo outra matriz.De fato é um tipo de matriz, mas essa deverá ter o mesmo número de linhas e o mesmo número de colunas, que é chamada de matriz quadrada. Nele não aplicamos as quatro operações, mas tem suas propriedades, como achar o valor numérico de um determinante.
Propriedades Sendo A, B e C matrizes do mesmo tipo ( m x n), temos as seguintes propriedades para a adição:
a) comutativa: A + B = B + A
b) associativa: ( A + B) + C = A + ( B + C)
c) elemento neutro: A + 0 = 0 + A = A, sendo 0 a matriz nula m x n
d) elemento oposto: A + ( - A) =