atps calculo limites
Professor Anderson
Cálculo I
Tema – Limites
LIMITES – UM POUCO DE HISTORIA
Limites nos apresentam um grande paradoxo. Todos os principais conceitos do cálculo derivada, continuidade, integral, convergência/divergência – são definidos em termos de limites.
Limite é o conceito mais fundamental do Cálculo; de fato, limite é o que distingue, no nível mais básico, o cálculo de álgebra, geometria e o resto da matemática. Portanto, em termos do desenvolvimento ordenado e lógico do cálculo, limites devem vir primeiro. Porém, o registro histórico é justamente o oposto. Por vários séculos, as noções de limite eram confusas, com ideias vagas e algumas vezes filosóficas sobre o infinito (números infinitamente grandes e infinitamente pequenos e outras entidades matemáticas) e com intuição geométrica subjetiva e indefinida. O termo limite em nosso sentido moderno é um produto do iluminismo na Europa no final do século XVIII e início do século XIX, e nossa definição moderna tem menos de 150 anos de idade.
Até este período, existiram apenas raras ocasiões nas quais a ideia de limite foi usada rigorosamente e corretamente.
A primeira vez que limites foram necessários foi para a resolução dos quatro paradoxos de Zenão (cerca de 450 a.C.). No primeiro paradoxo, a Dicotomia, Zenão colocou um objeto se movendo uma distância finita entre dois pontos fixos em uma série infinita de intervalos de tempo (o tempo necessário para se mover metade da distância, em seguida o tempo necessário para se mover metade da distância restante, etc.) durante o qual o movimento deve ocorrer. A conclusão surpreendente de Zenão foi que o movimento era impossível! Aristóteles (384-322 a.C.) tentou refutar os paradoxos de Zenão com argumentos filosóficos. Em matemática, uma aplicação cuidadosa do conceito de limite resolverá as questões levantadas pelos paradoxos de
Zenão.
Para suas demonstrações rigorosas das fórmulas para certas áreas e volumes,
Arquimedes (287- 212