Arrendondamento e regra de tres
Por Robison Sá
Um pouco de história
Estuda-se em proporção a relação entre grandezas. Em alguns casos vemos que as grandezas são diretamente proporcionais, ou seja, o aumento de uma implica o aumento da outra, em outros, inversamente proporcionais, isto é, o aumento de uma implica a redução da outra. Seja em quaisquer dos casos anteriores, podemos resolver grande parte dos problemas relacionados às grandezas proporcionais utilizando regra de três simples ou composta.
O conhecimento e a utilização de conceitos semelhantes à regra de três são muito antigos, tendo sua provável origem na China antiga, podendo ser observados em tempos muito distantes. Vários problemas envolvendo manipulações muito próximas do que hoje conhecemos como regra de três podem ser vistos no Papiro Rhind, documento confeccionado no Egito há cerca de 3000 anos. Mais recente que o Papiro Rhind, o livro Liber Abaci do matemático italiano Leonardo Fibonacci (1175-1250) revela vários problemas envolvendo a regra de três.
Apesar de sua criação ser tão remota, as aplicações relativas à regra de três são as mais variadas. Tratando da matemática utilitária, podemos dizer que a regra de três é primordial a nossa vida, pois soluciona questões corriqueiras com muita simplicidade e economia de tempo.
Vejam abaixo alguns problemas envolvendo regra de três simples e composta, direta e inversamente proporcionais.
Um quilo (usarei “quilo” simplificadamente para representar quilograma (Kg)) de farinha de trigo é suficiente para fazer 12 pães. De quanta farinha necessito para fazer 18 pães?
Quatro pedreiros constrói uma pequena casa em 90 dias. Dois pedreiros construirá a mesma casa em quanto tempo?
Se 8 homens levam 12 dias montando 16 máquinas, então, nas mesmas condições, 15 homens levarão quantos dias para montar 50 máquinas?
Trabalhando 6 dias, 5 operários produzem 400 peças. Quantas peças desse mesmo tipo serão produzidas por 7 operários em 9 dias de