aritimetica
NOME: LEONCIO HENRIQUE SOUZA BRUGNOROTTO
NOME:LEONARDO CARVALHO DA SILVA
PROGRESSÃO ARITMÉTICA
1)A soma dos múltiplos positivos de 8 formados por 3 algarismos é:
a) 64376
b) 12846
c) 21286
d) 112
e) 61376
SOLUÇÃO:
Números com 3 algarismos: de 100 a 999.
Primeiro múltiplo de 8 maior do que 100 = 104 (que é igual a 8x13)
Maior múltiplo de 8 menor do que 999 = 992 (que é igual a 8x124)
Temos então a PA: (104, 112, 120, 128, 136, ... , 992).
Da fórmula do termo geral an = a1 + (n – 1) . r poderemos escrever:
992 = 104 + (n – 1).8, já que a razão da PA é 8.
Daí vem: n = 112
Aplicando a fórmula da soma dos n primeiros termos de uma PA, teremos finalmente:
Sn = S112 = (104 + 992).(112/2) = 61376
A alternativa correta é portanto, a letra E.
2)Determinar o centésimo termo da progressão aritmética na qual a soma do terceiro termo com o sétimo é igual a 30 e a soma do quarto termo com o nono é igual a 60.
SOLUÇÃO:
Podemos escrever: a3 + a7 = 30 a4 + a9 = 60
Usando a fórmula do termo geral, poderemos escrever: a1 + 2r + a1 + 6r = 30 ou 2.a1 + 8r = 30 a1 + 3r + a1 + 8r = 60 ou 2.a1 + 11r = 60
Subtraindo membro a membro as duas expressões em negrito, vem:
3r = 30 , de onde concluímos que a razão é igual a r = 10.
1)Substituindo numa das equações em negrito acima, vem:
2.a1 + 8.10 = 30, de onde tiramos a1 = - 25.
Logo, o centésimo termo será: a100 = a1 + 99r = - 25 + 99.10 = 965
3) (UFBA) Um relógio que bate de hora em hora o número de vezes correspondente a cada hora, baterá , de zero às 12 horas x vezes. Calcule o dobro da terça parte de x.
Resp: 60
SOLUÇÃO:
Teremos que:
0 hora o relógio baterá 12 vezes. (Você não acha que bateria 0 vezes, não é?).
1 hora o relógio baterá 1 vez
2 horas o relógio baterá 2 vezes
3 horas o relógio baterá 3 vezes
....................................................
....................................................
12 horas o