Analise combinatoria

2020 palavras 9 páginas
01. INTRODUÇÃO

Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento da Análise Combinatória, parte da Matemática que estuda os métodos de contagem.
Esses estudos foram iniciados já no século XVI, pelo matemático italiano Niccollo Fontana (1500-1557), conhecido como Tartaglia. Depois vieram os franceses Pierre de Fermat (1601-1665) e Blaise Pascal (1623-1662).
A Análise Combinatória visa desenvolver métodos que permitam contar - de uma forma indireta - o número de elementos de um conjunto, estando esses elementos agrupados sob certas condições.

02 - FATORIAL

Seja n um número inteiro não negativo. Definimos o fatorial de n (indicado pelo símbolo n!) como sendo: n! = n .(n-1) . (n-2) . ... .4.3.2.1 para n  2. observações: Para n = 0, teremos: 0! = 1.
Para n = 1, teremos: 1! = 1.

EXEMPLOS:
a) 6! = 6.5.4.3.2.1 = 720
b) 4! = 4.3.2.1 = 24
c)observe que 6! = 6.5.4!
d)10! = 10.9.8.7.6.5.4.3.2.1
e)10! = 10.9.8.7.6.5!
f) 10! = 10.9.8!

03 - PRINCÍPIO FUNDAMENTAL DA CONTAGEM (PFC)

Se determinado acontecimento ocorre em n etapas diferentes, e se a primeira etapa pode ocorrer de k1 maneiras diferentes, a segunda de k2 maneiras diferentes, e assim sucessivamente, então o número total T de maneiras de ocorrer o acontecimento é dado por:

EXEMPLO:
O DETRAN decidiu que as placas dos veículos do Brasil serão codificadas usando-se 3 letras do alfabeto e 4 algarismos. Qual o número máximo de veículos que poderá ser licenciado?
Solução: Usando o raciocínio anterior, imaginemos uma placa genérica do tipo PWR-USTZ.
Como o alfabeto possui 26 letras e nosso sistema numérico possui 10 algarismos (de 0 a 9), podemos concluir que: para a 1ª posição, temos 26 alternativas, e como pode haver repetição, para a 2ª, e 3ª também teremos 26 alternativas. Com relação aos algarismos, concluímos facilmente que temos 10 alternativas para cada um dos 4 lugares. Podemos então afirmar que o número

Relacionados

  • Analise combinatoria
    1728 palavras | 7 páginas
  • Analise Combinatoria
    2046 palavras | 9 páginas
  • Analise combinatoria
    4891 palavras | 20 páginas
  • Analise combinatoria
    2635 palavras | 11 páginas
  • analise combinatoria
    318 palavras | 2 páginas
  • Analise combinatoria
    2803 palavras | 12 páginas
  • Análise combinatória
    1450 palavras | 6 páginas
  • análise combinatória
    1306 palavras | 6 páginas
  • Análise combinatória
    455 palavras | 2 páginas
  • Análise Combinatória
    274 palavras | 2 páginas