Alavancas
A proposta de Arquimedes segue o mesmo princípio. Mas vejamos os valores: sabemos hoje que um corpo com a mesma massa da Terra, se pudesse ser pesado na superfície do nosso planeta, pesaria 6 sextilhões (6 x 1021) de toneladas. Supondo-se que o sábio de Siracusa fosse capaz de levantar diretamente do solo um peso de 60 quilos, ele iria necessitar de uma imensa alavanca (índeformá-vel) cujo braço maior fosse 1023 vezes maior que o menor, ou seja, 100 000 000 000 000 000 000 000 vezes o braço menor.
Apoaindo essa alavanca na Lua, que está a cerca de 400 mil (4 x 105) quilômetros da Terra, Arquimedes teria de ficar na astronômica distância de 4 x 1028 quilômetros, a partir da Lua (4 x 105 x 1023), o que é quase 280 mil vezes mais distante que a galáxia mais remota. Mesmo supondo tudo isso possível, seria interessante notar o deslocamento que Arquimedes teria de dar na extremidade mais longa para que o braço menor levantasse o nosso planeta 1 centímetro apenas: cerca de 1 quintilhão (1018) de quilômetros. Esses cálculos não levam em conta o peso da alavanca. É claro: se é verdade que o sábio fez tal declaração, ela se destinava a realçar seu entusiamo pelo princípio da alavanca, e não para ser tomado ao pé da letra.4
Alavancas[editar | editar código-fonte]
Princípio do funcionamento de uma alavanca.
A força aplicada em pontos de extremidade da alavanca é proporcional à relação do comprimento do braço de alavanca medido entre o fulcro