Agrupamento
1º caso de fatoração: fator comum
Para fatorar expressões algébricas é necessário observar atentamente qual caso de fatoração pode ser aplicado.
São sete os casos diferentes utilizados na fatoração de expressões algébricas. O primeiro caso é a fatoração por meio do termo em comum ou colocação de termos em evidência.
Para fatorar uma expressão algébrica utilizando esse primeiro caso de fatoração, todos os monômios da expressão algébrica devem ter pelo menos algum termo em comum.
A fatoração é feita colocando o termo comum em evidência, veja alguns exemplos:
►a – ab é uma expressão algébrica, veja como devemos fatorá-la:
É preciso analisar se o 1º caso poderá ser utilizado para a fatoração, então é necessário analisar todos os seus monômios (termos) para ver se há termos em comum.
a – ab essa expressão tem dois monômios a e ab
Os dois possuem termos semelhantes: o termo semelhante é a. Então, colocamos esse termo comum em evidência.
Quando colocamos a em evidência devemos dividir a e ab (os monômios) por a (termo comum), assim:
a : a = 1, pois todo número (ou letra) dividido por ele mesmo é igual a 1.
ab : a = b, pois a : a = 1, então ficaria 1b que é o mesmo que b.
Portanto, a – ab = a (1 – b) ↓ Termos em evidência
►a3 – 4a2 é uma expressão algébrica, veja como fatorá-la:
Essa expressão algébrica tem 2 monômios a3 e 4a2. Eles têm o a como termo semelhante, então podemos colocá-lo em evidência, mas poderá surgir uma dúvida: devemos colocar o a3 ou a2? Devemos colocar sempre o de menor expoente, então colocamos a2.
Devemos dividir a3 e 4a2 por a2, assim:
a3 : a2 = a, pois a3 = a .a .a, então a . a . a : a2 é o mesmo que 1a = a.
4a2 : a2 = 4, pois a2 : a2 = 1, então ficaria 4 . 1 que é mesmo que 4.
Portanto, a3 – 4a2 = a2 (a – 4). ↓ Termos