Aaa fwefwer
10523 palavras
43 páginas
Departamento de Matem´tica – Sec¸˜o de Estat´ a ca ıstica e Aplica¸˜es co Probabilidades e Estat´ ıstica EXERC´ICIOS
Edi¸˜o de Fevereiro de 2007 ca Formul´rio a P (X = x) =
nx p (1 − p)n−x x P (X = x) =
x = 0, 1 , . . . , n
E (X ) = np
e−λ λx x! P (X = x) = p(1 − p)x−1
x = 0, 1 , . . .
x = 1, 2 , . . .
V ar (X ) = np(1 − p) E (X ) = V ar (X ) = λ
P (X = x) =
M
N
V ar (X ) = n
fX (x) = √
E (X ) =
¯
X −µ
√ ∼ t(n−1)
S/ n
¯
X −µ a
√ ∼ N (0, 1)
S/ n
S2 =
¯
¯
X 1 − X2 − ( µ 1 − µ 2 )
+
fX (x) = λe−λx , x ≥ 0
V ar (X ) = σ 2
¯
X −µ
√ ∼ N (0, 1) σ/ n
2
S1
n1
M N −M N −n
N
N N −1
1
(x − µ )2
,x∈I
R exp −
2σ 2
2πσ 2
E (X ) = µ
2 σ1 n1
2
V ar (X ) =
2 σ2 n2
+
¯
¯
X1 − X2 − (µ1 − µ2 )
a
2
2
(n1 −1)S1 +(n2 −1)S2 n1 +n2 −2
(Oi − Ei )2 a 2
∼ χ(k−β −1)
Ei
i=1
1 n1 r
s
n
ˆ
ˆ¯
¯ β0 = Y − β1 x
Yi = β0 + β1 xi + εi
ˆ β1 =
xi Yi − nxY
¯¯
i=1 n i=1 n 1
ˆ
ˆ
ˆ2ˆ
σ=
ˆ
Yi − Yi , Yi = β0 + β1 xi n − 2 i=1
ˆ β0 − β0
1
n
+
x2 x 2 −nx 2
¯
i
σ2
ˆ
∼ t(n−2)
ˆ β1 − β1
i=1 i=1 x2 i i=1
ˆ
¯
− nY 2 − β1
1 n xi Yi − nxY
¯¯
− nx2 ×
¯
x2 − nx2
¯
i
2
n i=1 x2 − nx2
¯
i
ˆ
ˆ
β0 + β1 x0 − (β0 + β1 x0 )
∼ t(n−2)
σ2
ˆ
¯ x 2 −nx 2 i n
Yi2
2
n
R2 =
n
1 σ= ˆ n−2 2
∼ N (0, 1)
∼ t(n1 +n2 −2)
1 n2 +
n i=1 1 λ2 (Oij − Eij )2 a 2
∼ χ(r−1)(s−1)
Eij
i=1 j =1
k
(n − 1)S 2
∼ χ2n−1)
(
σ2
1 λ ¯
¯
X1 − X2 − ( µ 1 − µ 2 )
n
1
¯
Xi − X n − 1 i=1
∼ N (0, 1)
2
S2
n2
(1 − p) p2 fX (x) =
x = max {0, n − N + M } , . . . , min {n, M }
E (X ) = n
V ar (X ) =
1
,a≤x≤b
b−a b+a (b − a)2
E (X ) =
V ar (X ) =
2
12
N n N −M n−x M x 1 p E (X ) =
2
¯
Yi2 − nY 2
+
(¯−x0 )2 x x 2 −nx 2
¯
i
σ2
ˆ
∼ t(n−2)