06/09/2013 09:43
As construções das operações revelam o princípio da linguagem matemática de sintetizar um determinado conjunto de informações. Esse princípio, muito importante para o pensamento matemático, pode ser mostrado a partir de operações simples, como é o caso da potenciação.
Objetivo
Mostrar a construção e a definição das operações como um recurso de linguagem para melhorar a comunicação e a aplicação do conteúdo de matemática em várias áreas do conhecimento.
Estratégias
1) A partir da construção de frases, mostrar a passagem da adição para a multiplicação como consequência das parcelas serem iguais, e como um processo de simplificação para a comunicação. Sugestão de frase: A compra de um produto é feita em 8 parcelas, com o valor de R$ 60,00 cada uma. Podemos interpretar como 60 + 60 + 60 + 60 + 60 + 60 + 60 + 60 = 480 ou 8 x 60 = 480.
2) A partir do princípio, mostrado acima, desmontar algumas tabuadas, transformando-as em adição com parcelas iguais. Por exemplo, na tabuada do 4 temos 9 x 4 = 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4.
3) Apresentar problemas de multiplicação com fatores iguais e mostrar a passagem da multiplicação para potenciação como consequência dos fatores serem iguais. Discutir a simplificação da escrita e do registro para esses casos, definindo o significado da base e do expoente.
Sugestão de problema: Imaginar uma amostra com 12 bactérias triplicando a cada minuto. Pedir para que os alunos calculem a quantidade de bactérias depois de cinco minutos. Discutir o procedimento do cálculo:
12 x 3 x 3 x 3 x 3 x 3 = 12 x 35
4) A partir das idéias que foram apresentadas, desafiar os alunos a transformarem potenciação em adição a partir de frases que contenham a potenciação. Exemplo: dois elevado ao cubo:
23 = 2 x 2 x 2 = 2 x (2 x 2) = (2 x 2) + (2 x 2) = (2 + 2) + (2 + 2 ) = 8
5) Discutir com os alunos que toda potenciação é também uma adição. Desafiar os alunos a desmontarem algumas potenciações, fazendo-os perceber que