Experimentalmente sabemos (e a 3ª Lei de Newton confirma) que ao exercermos uma força sobre a mola puxando para baixo (pendurando os blocos) a mola exercerá uma força de intensidade oposta à força peso com o intuito de restaurar o seu estado “relaxado” (ou natural) em que se encontrava inicialmente. A esta força contrária, chamada muitas vezes de “força restauradora”, Hooke chamou de força elástica da mola. Assim, para pequenos valores de x comparando ao comprimento L0 da mola, podemos escrever:Experimentalmente sabemos (e a 3ª Lei de Newton confirma) que ao exercermos uma força sobre a mola puxando para baixo (pendurando os blocos) a mola exercerá uma força de intensidade oposta à força peso com o intuito de restaurar o seu estado “relaxado” (ou natural) em que se encontrava inicialmente. A esta força contrária, chamada muitas vezes de “força restauradora”, Hooke chamou de força elástica da mola. Assim, para pequenos valores de x comparando ao comprimento L0 da mola, podemos escrever:Experimentalmente sabemos (e a 3ª Lei de Newton confirma) que ao exercermos uma força sobre a mola puxando para baixo (pendurando os blocos) a mola exercerá uma força de intensidade oposta à força peso com o intuito de restaurar o seu estado “relaxado” (ou natural) em que se encontrava inicialmente. A esta força contrária, chamada muitas vezes de “força restauradora”, Hooke chamou de força elástica da mola. Assim, para pequenos valores de x comparando ao comprimento L0 da mola, podemos escrever:Experimentalmente sabemos (e a 3ª Lei de Newton confirma) que ao exercermos uma força sobre a mola puxando para baixo (pendurando os blocos) a mola exercerá uma força de intensidade oposta à força peso com o intuito de restaurar o seu estado “relaxado” (ou natural) em que se encontrava inicialmente. A esta força contrária, chamada muitas vezes de “força restauradora”, Hooke chamou de força elástica da mola. Assim, para pequenos valores de x comparando ao comprimento L0 da mola, podemos